3 research outputs found

    A Logic with Reverse Modalities for History-preserving Bisimulations

    Full text link
    We introduce event identifier logic (EIL) which extends Hennessy-Milner logic by the addition of (1) reverse as well as forward modalities, and (2) identifiers to keep track of events. We show that this logic corresponds to hereditary history-preserving (HH) bisimulation equivalence within a particular true-concurrency model, namely stable configuration structures. We furthermore show how natural sublogics of EIL correspond to coarser equivalences. In particular we provide logical characterisations of weak history-preserving (WH) and history-preserving (H) bisimulation. Logics corresponding to HH and H bisimulation have been given previously, but not to WH bisimulation (when autoconcurrency is allowed), as far as we are aware. We also present characteristic formulas which characterise individual structures with respect to history-preserving equivalences.Comment: In Proceedings EXPRESS 2011, arXiv:1108.407

    Analysis of Probabilistic Basic Parallel Processes

    Full text link
    Basic Parallel Processes (BPPs) are a well-known subclass of Petri Nets. They are the simplest common model of concurrent programs that allows unbounded spawning of processes. In the probabilistic version of BPPs, every process generates other processes according to a probability distribution. We study the decidability and complexity of fundamental qualitative problems over probabilistic BPPs -- in particular reachability with probability 1 of different classes of target sets (e.g. upward-closed sets). Our results concern both the Markov-chain model, where processes are scheduled randomly, and the MDP model, where processes are picked by a scheduler.Comment: This is the technical report for a FoSSaCS'14 pape

    Type-based Analysis of PKCS#11 Key Management

    No full text
    Abstract. PKCS#11, is a security API for cryptographic tokens. It is known to be vulnerable to attacks which can directly extract, as cleartext, the value of sensitive keys. In particular, the API does not impose any limitation on the different roles a key can assume, and it permits to perform conflicting operations such as asking the token to wrap a key with another one and then to decrypt it. Fixes proposed in the literature, or implemented in real devices, impose policies restricting key roles and token functionalities. In this paper we define a simple imperative programming language, suitable to code PKCS#11 symmetric key management, and we develop a type-based analysis to prove that the secrecy of sensitive keys is preserved under a certain policy. We formally analyse existing fixes for PKCS#11 and we propose a new one, which is type-checkable and prevents conflicting roles by deriving different keys for different roles.
    corecore